Tag Archives: sea level

Ecological intelligence – a scarce resource

by Stan Hirst



We elders value the environment in which we live, and so we take a deep interest in anything that threatens the quality of that environment. For the past while we’ve been expressing concern about plans and proposals to run oil pipelines across the landscape and to build massive tanker terminals on the west coast to supply oil supertankers which will then chug up and down B.C.’s narrow coastal channels with their bituminous loads. Now we find ourselves faced by yet more proposals to haul yet more piles of thermal coal down to the coast for loading into yet more freighters to carry the stuff to yet more power plants in China for combustion to add, yes, yet more greenhouse gases to the planet’s already overloaded atmosphere.

We understand the underlying motivations of the people who propose, plan and implement all these grand schemes. Canadians don’t get to actually use any of the oil, gas and coal being extracted, hauled and shipped, so the reasons for the frenetic interest in these activities are more elementary – employment and revenue from exports. National statistics indicate that the energy sector provides 4% of Canada’s total employment and that income from energy extraction and export is currently 3.5% of average national income. These are not huge proportions in the national sense, but obviously represent a significant number of jobs and piles of loot for some. We look at the other side of the coin and express our concern with statistics and forecasts related to things like habitats for fish and wildlife, clean water and marine coastlines not befouled with oil slicks or worse.

Our reasons for concern at carbon extraction and combustion relate in the first instance to the very real possibility of local impacts from spills, contamination at the like. At the global level we see even greater threats to global climate and to planetary ecosystems from the additional carbon dioxide and methane which will be added to Earth’s atmosphere. Those impacts will affect virtually every person on the planet in some way, and the negative effects will be handed on to succeeding generations.

The really perplexing question now arises when we consider the motivations and decision-making modes of those driving the proposals to extract bitumen and coal and to ship it out for combustion. These folks look a lot like us. They live on this planet right here next to us. They seem to value environmental quality just as much as we do. They too have children and grandchildren who they want to see live happy and productive lives. Why then are they so happy to sidestep the obvious implications of negative global impacts and focus instead on the materialistic – jobs and money?

The difference between the two groups – the environmentally concerned and the environmentally unconcerned – seems to be a sensitivity to global ecological issues and to the vast web of connections and intersections between human activity and nature’s systems. Daniel Goleman, author and journalist, has termed this sensitivity ecological intelligence. Ecological refers to an understanding of living organisms and their ecosystems, and intelligence connotes the capacity to learn from experience and deal effectively with the shared environment.

In primitive societies this shared environment was essentially local – a valley, a stretch of shoreline or a path of forest used as habitat by fish and wildlife essential to local humans as food sources. Today, the global dominance of industry and commerce has brought the impacts of our lifestyles to virtually every corner of the planet. Current human use and consumption of the natural world far exceeds Earth’s long-term carrying capacity. At the same time, modern society has lost touch with the sensibility crucial to our survival as a species. Our daily routines carry on completely disconnected from the adverse impacts on the world around us. As Goleman expresses it – our collec­tive mind harbours blind spots that disconnect our everyday ac­tivities from the crises those activities cause in natural systems. An all-encompassing sensibility would be the only way to appreciate the interconnections between human actions and their direct and indirect impacts on the planet and on our own well-being and social systems.

A contemporary expression of ecological intelligence would be a naturalist’s ability to categorize and recognize patterns in the natural world – ecological, geological and climatic. Humans have done this for centuries. The global extent of human-induced change now requires that ecological intelligence be extended to the planetary level. Other levels of human intelligence, e.g. social and emotional, enable us to take other people’s perspectives, assimilate these and feel genuine empathy. Ecological intelligence extends this capac­ity to all natural systems.

The sheer efficiency and widespread prevalence of modern technologies have severely blunted the survival skills of billions of individuals on the planet. Modern economies require and encourage specialized expertise, which in turn depends on other specialists for tasks in another field. However, while many of us excel in a narrow specialized field, we all depend on the skills of experts – farmers, software engineers, nutritionists, mechanics – to make life work for us. We no longer have the abilities, the attunement to the natural world, nor the custom of passing on of local wisdom to new generations that traditionally allowed native peoples to find ways of living in harmony with their patch of the planet.

When it comes to seeing nature, differences in perception have huge consequences. Images of polar bears stranded on ice drifts or vanishing glaciers offer powerful symbols of the perils we face from global warming. Inconvenient truths of the trouble our planet is in are everywhere, but our collective ability to perceive them has been rendered ineffective. Our attention has been drawn, somewhat reluctantly, to symptoms like the slow rising of global sea levels or the pesticide-induced demise of our all-important bee populations, but how many other keys and subtle insights into natural disruption are we missing? We have no sensors for this sort of thing Goleman reminds us, nor is our otherwise impressive neural system designed to warn us of the ways that our activities are having on our planetary niche. We clearly have to acquire new sensitivities to a growing range of threats and learn what to do about them. In other words, we need urgently to sharpen our ecological intelligence.

Ecological intelligence should allow us to comprehend complex systems as well as the interrelations between the natural and man-made worlds, but developing it requires a vast store of knowledge. Too much for any one individual. Intelligence has traditionally been a characteristic of the individual, but now the ecological abilities we need in order to sur­vive must necessarily be collective. The challenges we face are too diverse, frequently too subtle or too complex to be understood and addressed by an individual. Problem recognition and solution now require intense efforts by a diverse range of experts, entrepreneurs, activists; in short, by all of us. As a group we need to learn what dangers we face, what their causes are, and how to render them harmless. On the other hand we need to see new opportunities. Above all, we need the collective determination to do all this.

Large organizations already make good use of distributed intelligence. Goleman cites the examples of hospitals where technicians, nurses, administrators and specialist physicians coordinate their skills to provide appropriate care to patients. A similar example is that of a modern commercial enterprise in which sales, marketing, finance, and strategic plan­ning each represent unique expertise yet op­erate as a whole to provide coordinated, shared understanding and implementation.

The shared nature of ecological intelligence makes it synergis­tic with social intelligence, which gives us the capacity to coordi­nate and harmonize our efforts. The art of working together effectively has to encompass abil­ities like empathy and perspective taking, candour and coopera­tion, to create person-to-person links that let information gain added value as it moves up. Collaboration and the exchange of in­formation are vital to amassing the essential ecological insights and necessary databases that will allow us to act for the greater good.

We’re doomed

The following post contains material of a depressing nature, and is unsuitable for readers under 65 years of age. Reader discretion is advised.

First point – the global climate is changing. Not many people dispute that any more. The mean global temperature has risen by 0.8°C over the past century, and the ten warmest years on record have all occurred since 1998. Within the past century many significant climate changes have been measured and reported, including increases in the frequency of heat waves in the U.S., an increasing proportion of precipitation coming in the form of intense, flood-inducing events, an increase in tropical cyclone intensity in the Atlantic Ocean, Caribbean, and Gulf of Mexico, a huge decrease in the seasonal extent of Arctic sea ice, and a big jump in the rate at which glaciers are melting.

The rates of change seem to be accelerating and most of the profound secondary changes are negative. Dr James Hansen, the NASA scientist who first drew international attention to the impending climate disaster, testified way back in 1988 that Earth had entered a long-term warming trend. Today the effects of global warming on the extremes of the global water cycle – stronger droughts and forest fires on the one hand, and heavier rains and floods on the other – have become more evident in Australia, Europe, North America, Africa and Asia.

Second point – the causal factors of climate change are now very well known. Earth is surrounded by a relatively thin layer of greenhouse gases – water vapour, carbon dioxide (CO2), methane and nitrous oxide – which act as a thermal blanket. About half the incoming solar radiation passes through the atmosphere to the Earth’s surface where some is absorbed and the remainder reflected back into the atmosphere. Substantial amounts of the energy absorbed are again radiated outward in the form of infrared heat. These contribute further to the warming of the atmosphere.

Third point – humanity has drastically changed global climatic dynamics by adding huge amounts of CO2, methane, nitrous oxide and chlorofluorocarbons to the atmosphere. Activities such as deforestation, land use changes and the burning of fossil fuels have increased atmospheric CO2 by a third since the Industrial Revolution began. Decomposition of wastes in landfills, burgeoning agriculture, especially rice cultivation, and huge populations of burping and manure-producing domestic livestock have boosted the amounts of methane in the atmosphere by a factor of three since the industrial revolution. Methane is twenty times more active than CO2 in atmospheric heat retention.

The atmospheric concentration of CO2 measured at the Mauna Loa Observatory in Hawaii is a good indicator of where we are now globally in respect of atmospheric change. Back in 1959 when the data collection programme was initiated by the National Oceanic and Atmospheric Administration (NOAA) the CO2 level was measured at 316 parts per million (ppm) and the annual increase was less than 1 ppm. Today the level is over 392 ppm and the annual increases are 2.2 ppm and getting larger all the time.

James Hansen and his climate scientist colleagues concluded that we have either reached, or are very close to, a set of climate “tipping points”. That means that climatic changes are now at a point where the feedbacks from changes spur even larger and more rapid further changes. Hansen cites Arctic sea ice as a good example of this. Global warming has initiated faster sea ice melt and has exposed darker ocean surfaces that absorb more sunlight which leads to more melting of ice. As a result, and without any additional greenhouse gases, the Arctic could soon be ice-free in the summer. The western Antarctic and Greenland ice sheets are vulnerable to even small additional warming – once disintegration gets well under way it will become unstoppable.

Pause for reality check – not only is climatic change a reality, it is progressing at an accelerating rate, the negative consequence are getting greater, and the likelihood of us managing to slow or reverse the negative trends are getting smaller.

Fourth point – James Hansen and his fellow climate scientists looked at the atmospheric CO2 levels, then at the changes in climate which were occurring, and came up with the recommendation that a CO2 level of 350 ppm (last recorded back in 1987) was pretty much the upper allowable limit if massive climatic related adverse effects were to be avoided. The number 350 has a certain appealing ring to it, and has been widely adapted by environmental organizations such as Bill McKibben’s 350.org as a universal target for citizen and government action on carbon emissions. The protagonists are quite aware that the present global atmospheric CO2 level has already overshot that target by more than 40 ppm, but they argue, convincingly, that a reversal is absolutely essential to safeguard our long-term global future.

Fifth point – and now we’re at the crux of the problem. How on Earth, or anywhere else for that matter, do we get anywhere close to reducing the rate at which atmospheric CO2 increases in future, never mind actually reversing the trend towards 350 ppm?

We think of Earth’s carbon reservoirs as being great fields of coal and petroleum compounds, which are more or less stable until we dig them up and burn them. But the globe’s biggest carbon reservoirs are in the atmosphere, the ocean, living ecosystems and soils, and are highly dynamic. They all exchange CO2 with the atmosphere, they both absorb it (oceans) and assimilate it (ecosystems), and they release it (oceans) or respire it (ecosystems). The critical point is that anthropogenic carbon emitted into the atmosphere is not destroyed but adds to the stockpile and is redistributed among the other carbon reservoirs. The turnover times range from years or decades (living plants) to millennia (the deep sea, soil). The bottom line is that any carbon released into the atmosphere is going to be around for a long, long time. Up to 1000 years in fact.

Sixth point – so how do we get from our present scene of 390 ppm CO2 in the atmosphere and impending climate doom to something closer to 350 ppm and a more stable climate scenario? Straight answer – we cannot. We simply don’t have that option.

Seventh point – the absolutely best case scenario for reduction of CO2 emissions to the atmosphere would be an immediate halt to all activities leading to anthropogenic carbon emissions. Park all motor vehicles, no more home heating, no coal-fired power plants, no burning of natural gas, no aircraft flying overhead, shoot and bury 90% of all domestic livestock. Just shut down all of human civilization. No more anthropogenic carbon emissions. Would this sacrifice bring the CO2 level down in a hurry?

Dr Susan Solomon and her colleagues at NOAA, with the help of their sophisticate computer models have addressed that very question. They ran a coupled climate–carbon cycle model which has components representing the dynamic ocean, the atmospheric energy–moisture interaction, and interactive sub-models of marine and terrestrial carbon cycles. The model reveals, sadly for us, that climate change is largely irreversible for 1000 years after all carbon emissions cease. The drop in radiative forcing of atmospheric CO2 (i.e. the extent to which CO2 causes atmospheric warming) is largely compensated by slower loss of heat to the oceans. So atmospheric temperatures do not drop significantly for at least 1,000 years. And the natural interactive processes between the atmosphere, ocean and ecosystems would carry on. Atmospheric CO2 concentration would eventually drop back to 350 ppm by about 2060 and then flatten out to near 300 ppm for the rest of the 1000 years.

Eighth point – I haven’t noticed any great urges on the part of ourselves to go and huddle in caves and gnaw on pine nuts and raw fish (no wood-burning allowed) to make this scenario work, so what is more likely?

Global carbon emissions from fossil fuel use were 6.2 billion tonnes back in 1990 when global CO2 was near 355 ppm. The 2010 estimate is 8.5 billion tonnes. That’s a 38 % increase over the levels used to formulate the Kyoto Agreement. The annual growth rate of emissions derived from fossil fuels is now about 3.5%, an almost four-fold increase from the 0.9% per year for the 1990-1999 period. Carbon emissions from land-use change (i.e. mainly deforestation) in 2007 (in just that one year) were estimated at 1.5 billion tonnes of carbon. The biggest increase in emissions has taken place in developing countries, largely in China and India, while developed countries have been growing slower. The largest regional shift has been that China passed the U.S. in 2006 to become the largest CO2 emitter, and India will soon overtake Russia to become the third largest emitter. Currently, more than half of the global emissions come from less developed countries. Developing countries with 80% of the world’s population still account for only 20% of the cumulative emissions since 1751. There is nowhere for these rates to go, other than up.

When the Intergovernmental Panel on Climate Change produced their Fourth Assessment Report in 2007, they diplomatically tried to hedge their bets. So they churned out 40 different scenarios based on emissions scenarios for the decade 2000-2010 which encompassed the full range of uncertainties related to future carbon emissions, demographic, social and economic inputs and possible future technological developments. The model predictions were correspondingly wide, ranging from “best” to “worst” in terms of atmospheric CO2 levels and changes in the associated climatic driving forces. Now it has become apparent that the actual emissions growth rate for 2000-2007 has exceeded the highest forecasted growth rates for 2000-2010 in their emissions scenarios.

Ninth point – so the most likely future outcomes (by the end of the century) are those at the top end of the scale outputted by the computer models (diagram above). That is to say our grandchildren will be looking at CO2 levels above 900 ppm, mean global temperature rises of 5 or 6 degrees C over what they are today, and an average sea level rise above 0.5 metres. Plus all the storms, cyclones, droughts, floods, vanishing shorelines, water wars and famines that might creep in along the way.

The end – CO2 concentrations in the atmosphere and future temperatures are just numbers, and pretty much the only things that computer models can output. We will have to estimate the extent of global human misery by ourselves.

Climate change indicators

by Stan Hirst

The evidence of human influences on climate change has become increas­ingly clear and compelling over the last several decades There is now convincing evidence that human activities such as electricity pro­duction and transportation are adding to the concen­trations of greenhouse gases that are already naturally present in the atmosphere. These heat-trapping gases are now at record-high levels in the atmosphere com­pared with the recent and distant past.

The U.S. Environmental Protection Agency has recently published Climate Change Indicators in the United States to help the concerned public readers interpret a set of important indicators  for climate change. The report presents 24 indicators, each describing trends in some way related to the causes and effects of climate change. The indicators focus primarily on the United States, but in some cases global trends are presented in order to provide context or a basis for comparison.  The following is a brief summary of the report’s contents.

Greenhouse Gases

Global Greenhouse Gas Emissions. Worldwide, emissions of greenhouse gases from human activities increased by 26 percent from 1990 to 2005. Emissions of carbon dioxide, which account for nearly three-fourths of the total, increased by 31 percent over this period. The majority of the world’s emissions are associated with energy use.

Atmospheric Concentrations of Greenhouse Gases. Concentrations of carbon dioxide and other greenhouse gases in the atmosphere have risen substantially since the beginning of the industrial era. Almost all of this increase is attributable to human activities. Histori­cal measurements show that the current levels of many greenhouse gases are higher than any seen in thousands of years, even after accounting for natural fluctuations.

Climate Forcing. From 1990 to 2008, the radiative forcing of all the greenhouse gases in the Earth’s atmosphere increased by about 26 percent. The rise in carbon dioxide concentrations accounts for approximately 80 percent of this increase. Radiative forcing is a way to measure how substances such as greenhouse gases affect the amount of energy that is absorbed by the atmosphere – an increase in radiative forcing leads to warming while a decrease in forcing produces cool­ing.

Weather and Climate

U.S. and Global Temperature. Average temperatures have risen across the lower 48 states since 1901, with an increased rate of warming over the past 30 years. Parts of the North, the West, and Alaska have seen temperatures increase the most. Seven of the top 10 warmest years on record for the lower 48 states have occurred since 1990, and the last 10 five-year periods have been the warmest five-year periods on record. Average global temperatures show a similar trend, and 2000–2009 was the warmest decade on record worldwide.

Heat Waves. The frequency of heat waves in the United States decreased in the 1960s and 1970s, but has risen steadily since then. The percentage of the United States experi­encing heat waves has also increased. The most severe heat waves in U.S. history remain those that occurred during the “Dust Bowl” in the 1930s, although average temperatures have increased since then.

Drought. Over the period from 2001 through 2009, roughly 30 to 60 percent of the U.S. land area experienced drought conditions at any given time. However, the data for this indicator have not been collected for long enough to determine whether droughts are increasing or decreasing over time.

U.S. and Global Precipitation. Average precipitation has increased in the United States and worldwide. Since 1901, precipitation has increased at an average rate of more than 6 percent per century in the lower 48 states and nearly 2 percent per century worldwide. However, shifting weather patterns have caused certain areas, such as Hawaii and parts of the Southwest, to experience less precipitation than they used to.

Heavy Precipitation. In recent years, a higher percentage of precipitation in the United States has come in the form of intense single-day events. Eight of the top 10 years for extreme one-day precipitation events have occurred since 1990. The occurrence of ab­normally high annual precipitation totals has also increased.

Tropical Cyclone Intensity. The intensity of tropical storms in the Atlantic Ocean, Caribbean, and Gulf of Mexico did not exhibit a strong long-term trend for much of the 20th century, but has risen noticeably over the past 20 years. Six of the 10 most active hurricane seasons have occurred since the mid-1990s. This increase is closely related to variations in sea surface temperature in the tropical Atlantic.


Ocean Heat. Several studies have shown that the amount of heat stored in the ocean has increased substantially since the 1950s. Ocean heat content not only determines sea surface temperature, but it also affects sea level and currents.

Sea Surface Temperature. The surface temperature of the world’s oceans increased over the 20th century. Even with some year-to-year variation, the overall increase is statisti­cally significant, and sea surface temperatures have been higher during the past three decades than at any other time since large-scale measurement began in the late 1800s.

Sea Level. When averaged over all the world’s oceans, sea level has increased at a rate of roughly six-tenths of an inch per decade since 1870. The rate of increase has accelerated in recent years to more than an inch per decade. Changes in sea level relative to the height of the land vary widely because the land itself moves. Along the U.S. coastline, sea level has risen the most relative to the land along the Mid-Atlantic coast and parts of the Gulf Coast. Sea level has decreased relative to the land in parts of Alaska and the Northwest.

Ocean Acidity. The ocean has become more acidic over the past 20 years, and studies suggest that the ocean is substantially more acidic now than it was a few centuries ago. Rising acidity is associated with increased levels of carbon dioxide dissolved in the water. Changes in acidity can affect sensitive organisms such as corals.

Snow & Ice

Arctic Sea Ice. Part of the Arctic Ocean stays frozen year-round. The area covered by ice is typically smallest in September, after the summer melting season. September 2007 had the least ice of any year on record, followed by 2008 and 2009. The extent of Arctic sea ice in 2009 was 24 percent below the 1979 to 2000 historical average.

Glaciers. Glaciers in the United States and around the world have generally shrunk since the 1960s, and the rate at which glaciers are melting appears to have accelerated over the last decade. Overall, glaciers worldwide have lost more than 2,000 cubic miles of water since 1960, which has contributed to the observed rise in sea level.

Lake Ice. Lakes in the northern United States generally appear to be freezing later and thawing earlier than they did in the 1800s and early 1900s. The length of time that lakes stay frozen has decreased at an average rate of one to two days per decade.

Snow Cover. The portion of North America covered by snow has generally decreased since 1972, although there has been much year-to-year variability. Snow covered an average of 3.18 million square miles of North America during the years 2000 to 2008, compared with 3.43 million square miles during the 1970s.

Snowpack. Between 1950 and 2000, the depth of snow on the ground in early spring decreased at most measurement sites in the western United States and Canada. Spring snowpack declined by more than 75 percent in some areas, but increased in a few others.

Society & Ecosystems

Heat-Related Deaths. Over the past three decades, more than 6,000 deaths across the United States were caused by heat-related illness such as heat stroke. However, consider­able year-to-year variability makes it difficult to determine long-term trends.

Length of Growing Season. The average length of the growing season in the lower 48 states has increased by about two weeks since the beginning of the 20th century. A particularly large and steady increase has occurred over the last 30 years. The observed changes reflect earlier spring warming as well as later arrival of fall frosts. The length of the growing season has increased more rapidly in the West than in the East.

Plant Hardiness Zones. Winter low temperatures are a major factor in determining which plants can survive in a particular area. Plant hardiness zones have shifted noticeably northward since 1990, reflecting higher winter temperatures in most parts of the country. Large portions of several states have warmed by at least one hardiness zone.

Leaf and Bloom Dates. The timing of natural events such as leaf growth and flower blooms are influenced by climate change. Observations of lilacs and honeysuck­les in the lower 48 states indicate that leaf growth is now occurring a few days earlier than it did in the early 1900s. Lilacs and honeysuckles are also blooming slightly earlier than in the past, but it is difficult to determine whether this change is statistically meaningful.

Bird Wintering Ranges. Some birds shift their range or alter their migration habits to adapt to changes in temperature or other environmental conditions. Long-term stud­ies have found that bird species in North America have shifted their wintering grounds northward by an average of 35 miles since 1966, with a few species shifting by several hundred miles. On average, bird species have also moved their wintering grounds farther from the coast, consistent with rising inland temperatures.